

Low Cost Instrumentation Amplifier

AD622

FEATURES

Easy to use Low cost solution Higher performance than two or three op amp design Unity gain with no external resistor **Optional gains with one external resistor** (Gain range: 2 to 1000) Wide power supply range: ±2.6 V to ±15 V Available in 8-lead PDIP and 8-lead SOIC_N packages Low power, 1.5 mA maximum supply current **DC performance** 0.15% gain accuracy: G = 1 125 µV maximum input offset voltage 1.0 µV/°C maximum input offset drift 5 nA maximum input bias current 66 dB minimum common-mode rejection ratio: G = 1 Noise 12 nV/√Hz @ 1 kHz input voltage noise 0.60 µV p-p noise: 0.1 Hz to 10 Hz, G = 10 AC characteristics 800 kHz bandwidth: G = 10 10 µs settling time to 0.1% @ G = 1 to 100 1.2 V/µs slew rate

APPLICATIONS

Transducer interface Low cost thermocouple amplifier Industrial process controls Difference amplifier Low cost data acquisition

PIN CONFIGURATION

GENERAL DESCRIPTION

The AD622 is a low cost, moderately accurate instrumentation amplifier that requires only one external resistor to set any gain between 2 and 1000. For a gain of 1, no external resistor is required. The AD622 is a complete difference or subtracter amplifier system that also provides superior linearity and common-mode rejection by incorporating precision lasertrimmed resistors.

The AD622 replaces low cost, discrete, two or three op amp instrumentation amplifier designs and offers good commonmode rejection, superior linearity, temperature stability, reliability, and board area consumption. The low cost of the AD622 eliminates the need to design discrete instrumentation amplifiers to meet stringent cost targets. While providing a lower cost solution, it also provides performance and space improvements.

Rev. D

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

SPECIFICATIONS

 T_{A} = 25°C, V_{S} = ±15 V, and R_{L} = 2 k Ω typical, unless otherwise noted.

Table 1.

Parameter	Conditions	Min	Тур	Max	Unit
GAIN	$G = 1 + (50.5 \text{ k/R}_G)$				
Gain Range		1		1000	
Gain Error ¹	$V_{OUT} = \pm 10 V$				
G = 1			0.05	0.15	%
G = 10			0.2	0.50	%
G = 100			0.2	0.50	%
G = 1000			0.2	0.50	%
Nonlinearity	$V_{OUT} = \pm 10 V$				
G = 1 to 1000	$R_L = 10 \ k\Omega$		10		ppm
G = 1 to 100	$R_L = 2 \ k\Omega$		10		ppm
Gain vs. Temperature	Gain = 1			10	ppm/°C
	Gain $> 1^1$			-50	ppm/°C
VOLTAGE OFFSET	Total RTI Error = V _{OSI} + V _{OSO} /G				
Input Offset, Vosi	$V_s = \pm 5 V \text{ to } \pm 15 V$		60	125	μV
Average Temperature Coefficient	$V_s = \pm 5 V \text{ to } \pm 15 V$			1.0	μV/°C
Output Offset, Voso	$V_s = \pm 5 V \text{ to } \pm 15 V$		600	1500	μV
Average Temperature Coefficient	$V_s = \pm 5 V \text{ to } \pm 15 V$			15	μV/°C
Offset Referred to Input vs. Supply (PSR)	$V_s = \pm 5 V \text{ to } \pm 15 V$				
G = 1		80	100		dB
G = 10		95	120		dB
G = 100		110	140		dB
G = 1000		110	140		dB
INPUT CURRENT					
Input Bias Current			2.0	5.0	nA
Average Temperature Coefficient			3.0		pA/°C
Input Offset Current			0.7	2.5	nA
Average Temperature Coefficient			2.0		pA/°C
INPUT					
Input Impedance					
Differential			10 2		G Ω pF
Common Mode			10 2		GΩ∥pF
Input Voltage Range ²	$V_{S} = \pm 2.6 V \text{ to } \pm 5 V$	-Vs + 1.9		+Vs - 1.2	V
Over Temperature		$-V_{s} + 2.1$		+Vs - 1.3	V
	$V_{S} = \pm 5 V \text{ to } \pm 18 V$	$-V_{s} + 1.9$		$+V_{s}-1.4$	V
Over Temperature		$-V_{s} + 2.1$		+Vs - 1.4	V
Common-Mode Rejection Ratio DC to 60 Hz with 1 kΩ Source Imbalance	$V_{CM} = 0 V \text{ to } \pm 10 V$				
G = 1		66	78		dB
G = 10		86	98		dB
G = 100		103	118		dB
G = 1000		103	118		dB
OUTPUT					
Output Swing	$R_L = 10 \ k\Omega$				
	$V_s = \pm 2.6 V$ to $\pm 5 V$	-Vs + 1.1		+Vs - 1.2	V
Over Temperature		$-V_{s} + 1.4$		+Vs - 1.3	V
	$V_s = \pm 5 V$ to $\pm 18 V$	-Vs + 1.2		+Vs - 1.4	V
Over Temperature		-Vs + 1.6		+Vs – 1.5	V
Short Current Circuit			±18		mA

AD622

Parameter	Conditions	Min	Тур	Max	Unit
DYNAMIC RESPONSE					
Small Signal –3 dB Bandwidth					
G = 1			1000		kHz
G = 10			800		kHz
G = 100			120		kHz
G = 1000			12		kHz
Slew Rate			1.2		V/µs
Settling Time to 0.1%	10 V step				
G = 1 to 100			10		μs
NOISE					
Voltage Noise, 1 kHz	Total RTI Noise = $\sqrt{(e^2_{ni}) + (e_{no}/G)^2}$				
Input Voltage Noise, e _{ni}			12		nV/√Hz
Output Voltage Noise, eno			72		nV/√Hz
RTI, 0.1 Hz to 10 Hz					
G = 1			4.0		μV р-р
G = 10			0.6		μV р-р
G = 100			0.3		μV р-р
Current Noise	f = 1 kHz		100		fA/√Hz
0.1 Hz to 10 Hz			10		рАр-р
REFERENCE INPUT					
R _{IN}			20		kΩ
l _{in}	$V_{IN+}, V_{REF} = 0$		50	60	μΑ
Voltage Range		$-V_{s} + 1.6$		+Vs - 1.6	V
Gain to Output			1 ± 0.0015		
POWER SUPPLY					
Operating Range ³		±2.6		±18	V
Quiescent Current	$V_{s} = \pm 2.6 V \text{ to } \pm 18 V$		0.9	1.3	mA
Over Temperature			1.1	1.5	mA
TEMPERATURE RANGE					
For Specified Performance			-40 to +85		°C

 1 Does not include effects of External Resistor R_G. 2 One input grounded, G = 1. 3 Defined as the same supply range that is used to specify PSR.

ABSOLUTE MAXIMUM RATINGS

Table 2.

1 4010 21			
Parameter	Rating		
Supply Voltage	±18 V		
Internal Power Dissipation ¹	650 mW		
Input Voltage (Common Mode)	±Vs		
Differential Input Voltage ²	±25 V		
Output Short Circuit Duration	Indefinite		
Storage Temperature Range	–65°C to +125°C		
Operating Temperature Range	-40°C to +85°C		
Lead Temperature (Soldering, 10 sec)	300°C		

¹Specification is for device in free air; see Table 3.

²May be further restricted for gains greater than 14. See the Input Protection section for more information.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

 θ_{JA} is specified for the device in free air.

Table 3. Thermal Resistance

Package Type	θ _{JA}	Unit
8-Lead PDIP (N-8)	95	°C/W
8-Lead SOIC_N (R-8)	155	°C/W

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

070606-A

OUTLINE DIMENSIONS

Dimensions shown in millimeters and (inches)

AD622

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
AD622AN	-40°C to +85°C	8-Lead PDIP	N-8
AD622ANZ ¹	-40°C to +85°C	8-Lead PDIP	N-8
AD622AR	-40°C to +85°C	8-Lead SOIC_N	R-8
AD622AR-REEL	-40°C to +85°C	8-Lead SOIC_N	R-8
AD622AR-REEL7	–40°C to +85°C	8-Lead SOIC_N	R-8
AD622ARZ ¹	-40°C to +85°C	8-Lead SOIC_N	R-8
AD622ARZ-RL ¹	-40°C to +85°C	8-Lead SOIC_N	R-8
AD622ARZ-RL71	-40°C to +85°C	8-Lead SOIC_N	R-8

 1 Z = RoHS Compliant Part.